CITIZEN CRANE FORUM 2017

A meeting to discuss the Citizen Crane Project and shape its future

10:00	Arrival, registration and coffee
10:15	Welcome by Alison Debney (ZSL)
10:20	How the Citizen Crane Project supports the aims of the Catchment Partnership: Ilse Steyl, CVP
10.30	Citizen Crane project Updates: Citizen Crane Team
11.00	Thames Water update on the Surface Water Outfall Programme: Ruta Akelyte, Thames Water
11.10	Citizen Science Leads to Compliance: Mat Reed, EA
11:20	Break
11:30	Works in Harrow to improve the Yeading Brook: Mick Bradshaw, Harrow Council
11:40	Thames Water's Smarter Catchment Proposal: Yvette de Garis, TW
11.50	Riverfly plus -Examples of how other Citizen Science projects are impacting river management around the country- Steve Brooks, The Riverfly Partnership.
12:10	Options for years 4 to 6 - general discussion
12:30	Break for Lunch

Photo and Health and Safety Review for volunteers

HOW THE CITIZEN CRANE PROJECT SUPPORTS THE AIMS OF THE CATCHMENT PARTNERSHIP

ZOOLOGICAL SOCIETY OF LONDON 31 OCTOBER 2017

DR ILSE STEYL

CATCHMENT BASED APPROACH

- The Catchment Based Approach (CaBA) community-led approach, engages people and groups from across society.
- 100+ catchments across England and Wales Crane catchment is one.

Some statistics:

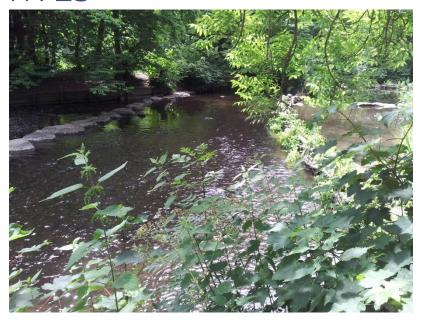
- Less than one-fifth of rivers in England are classed as healthy (using WFD criteria);
- Globally, 81% of freshwater species are in decline;
- In the UK, 13% of freshwater species are threatened with extinction.

(Source: WaterLife)

CRANE CATCHMENT OBJECTIVES

A River Rich and Diverse in Habitats and Native Wildlife

Clean Clear Water


A Natural Looking and Functioning River with Sustainable Flow

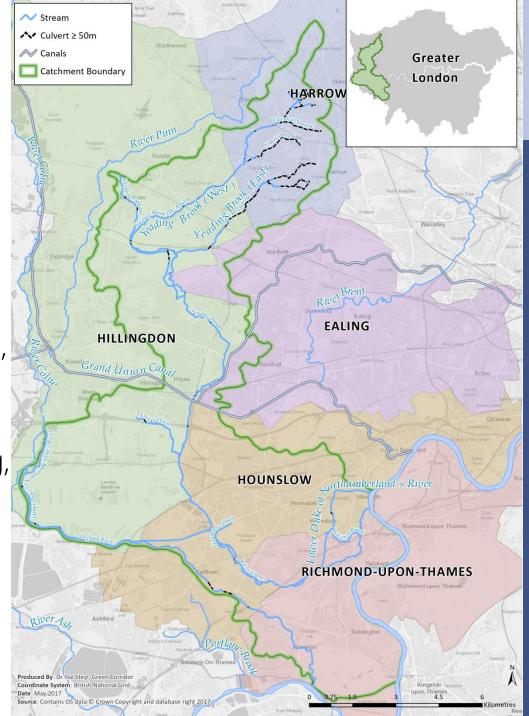
Reduced Risk of Flooding in Built-up Areas

Collaboration and Engagement

Awareness, Access and Appreciation

A Celebration of the Crane's Heritage

ENGAGING LOCAL COMMUNITIES IN RIVER HEALTH



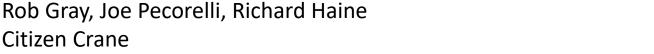
CRANE CATCHMENT

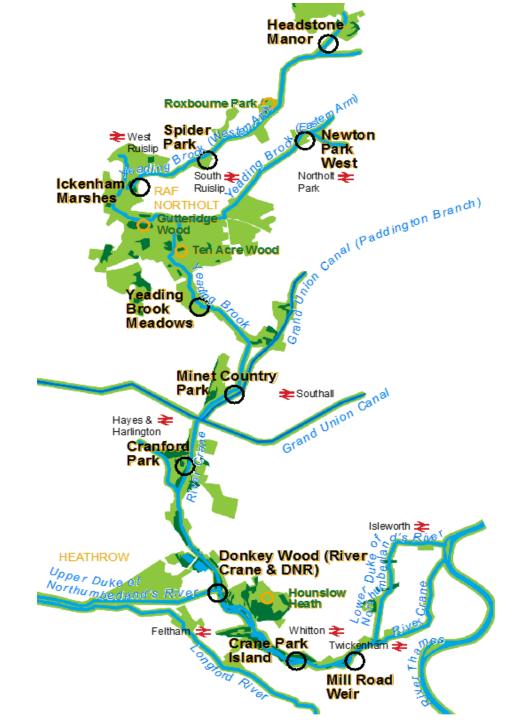
- Total size \pm 127 km²
- Typical urban catchment, suffering with chronic water quality problems, invasive species, canalisation, straightening, over-widening, etc.
- 5 London Boroughs
 (Harrow, Hillingdon, Ealing, Hounslow, Richmond-upon-Thames

CITIZEN CRANE

- Citizen science project scientific research conducted, in whole or in part, by amateur scientists on a voluntary basis.
- Running for 3½ years consistent time series dataset.
- Collaboration is key.
- Regulation alone will not address all issues or realise all benefits.

THANKYOU




Citizen Crane Project Update

Crane Catchment Map& Monitoring Points

- 35 km main channel length
- 11 monitoring sites in 5 boroughs
- Monthly RMI and water quality (conc. and loading)
- TW labs for analysis

Project Features

- Monthly monitoring started in May 2014
- Volunteer led (50 volunteers trained to date)
- Project team: frog environmental, ZSL and FORCE
- Steering Group: CVP, EA + TW (meet quarterly)
- Annual Report and Forum
- Long term outfall monitoring since 2015
- Outfall Safari in 2016
- Funding until spring 2020

Key Previous Findings

- Method is reliable and consistent
- Upper reaches poor
- WQ generally improves downstream
- Better WQ but poor geomorphology in middle
- Upper DNR: poor P but improves RMI
- NH3N more important than P as RMI control
- Outfall Safari finds major pollution sources

Key Previous Outcomes

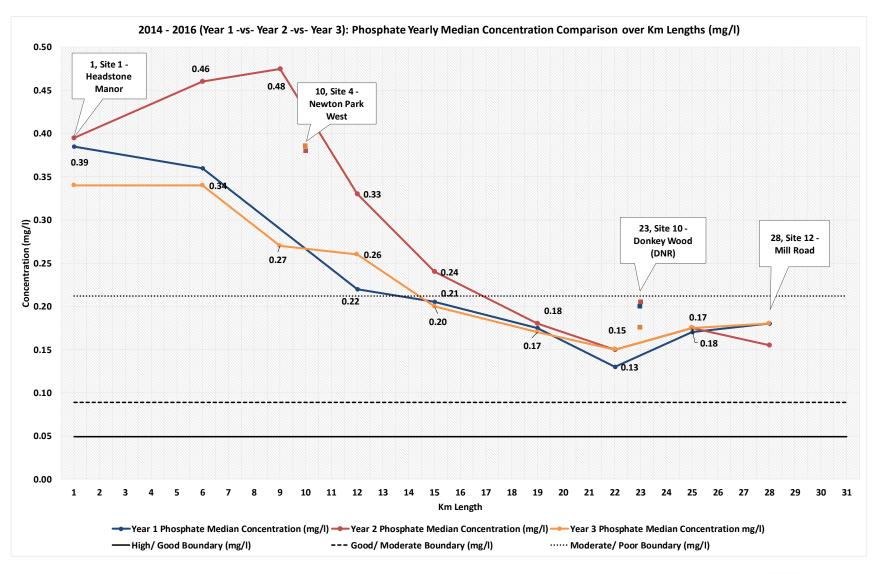
- Identified ~ 10 pollution incidents enforcement and prosecution follow
- TW SWOP shifted to upper reaches
- SWOP monitoring supports clean up effort
- Increased public and council awareness of misconnection issue
- Approach applied elsewhere in London

Engagement

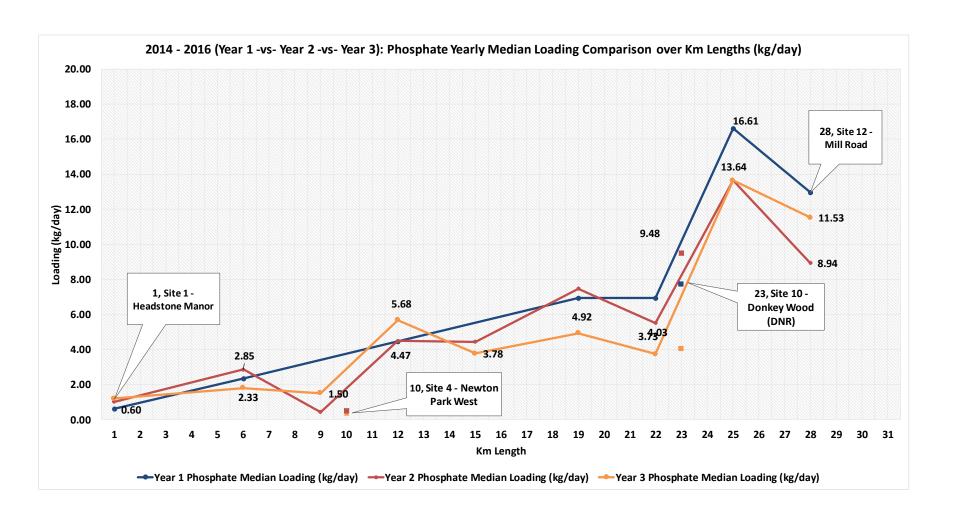
- Local communities
- EA and TW
- CVP partners
- London wide through CaBA, CPiL etc
- Projects with ~ 10 universities

Academic Projects

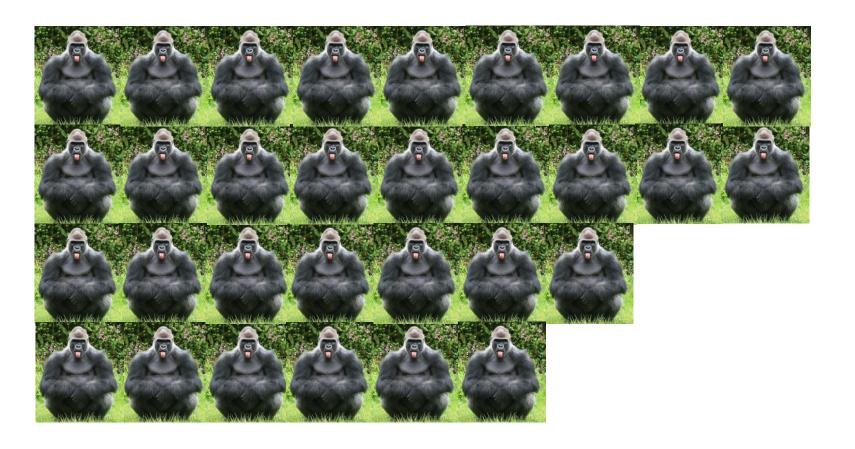
Institute	Author	Area of study	
St Marys University	Dr Iain Cross	The potential of citizen science to inform expert understanding: a case study of an urban river	
St Marys University	Will Hawkins	The Effects of Urban Influences, Including Heathrow Airport, on the Water Quality of the River Crane	
St Marys University	Gabby Judd	Crane invertebrates in pools and riffles	
Kingston University	Andrew Carr	An examination of spatial and temporal variance in Ammoniacal Nitrogen, Phosphorus, and Sulphate in the River Crane, alongside their impact on macro- invertebrate levels	
Royal Holloway	David Strachan	Quantification of organic and inorganic pollutants arising from road run off in the River Crane catchment	
Cranfield	Anna Bukovski	The identification of pollutant sources in the River Crane catchment	
Durham	Bertie Bricusse	Water quality in an urban lowland river: The River Crane Catchment in West London	



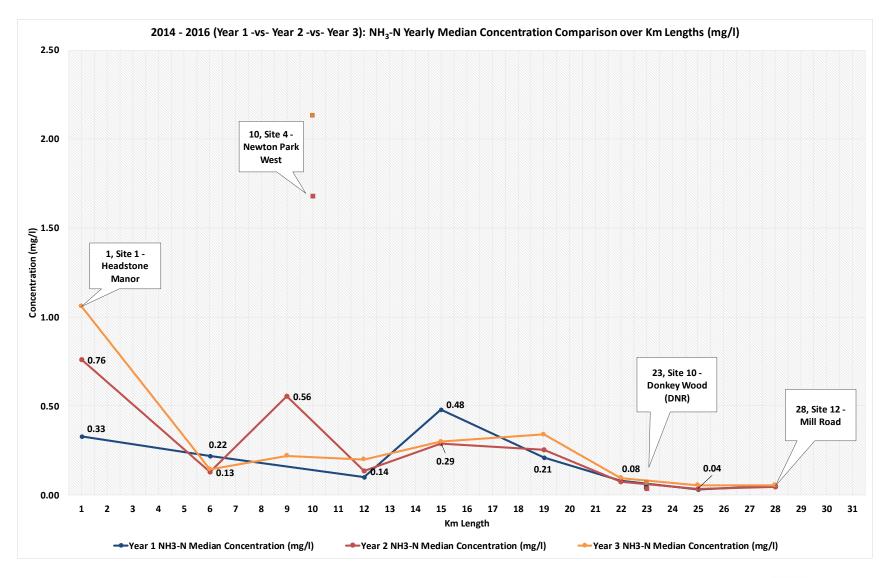
Median P Concentrations Year 1 - 3



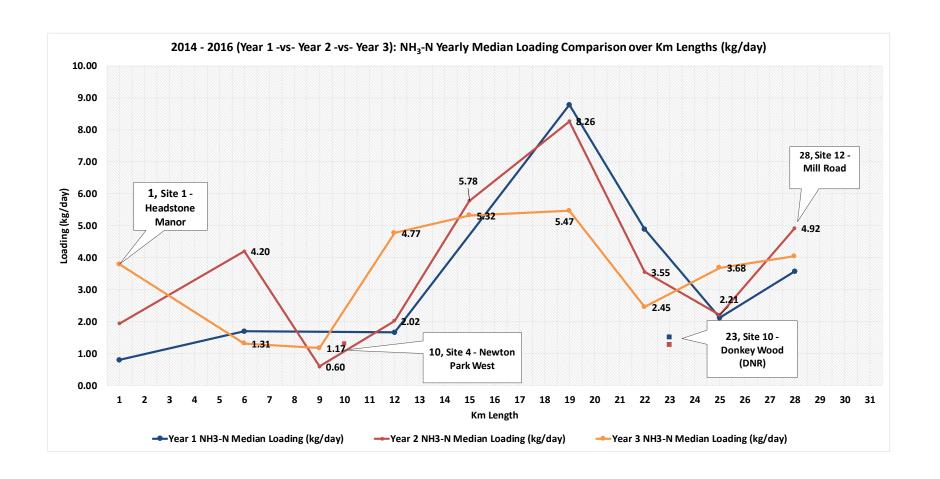
Median P loading years 1-3 (kg/day)



5 Tons of phosphate (expressed as gorillas)



Median NH3-N conc year 1-3



Median NH3-N Loading Data

Next steps for data collection

- Reset all gauging stations
- QA on all data collection protocols
- High confidence in loading data
- Continue sampling for another 3 years
- Data highlights problem areas and allow us to track improvement/deterioration over time
- Data feeds into other elements of Citizen Crane e.g. catchment mass balance model

Road Run off

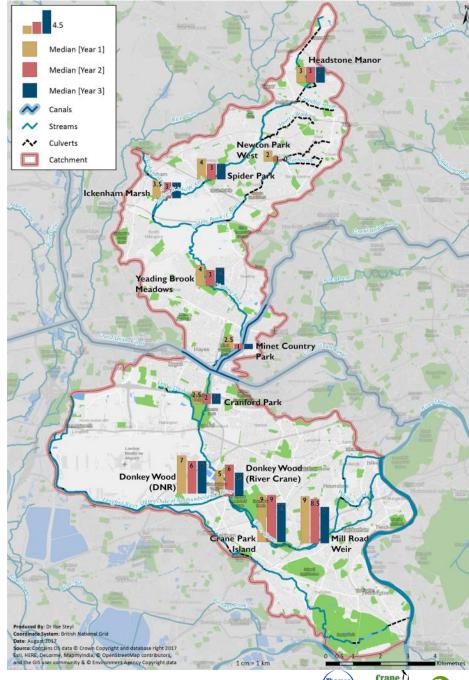
- Investigations into impact of Road Run-off
- Royal Holloway & Cranfield University
- Major roads cross the River Crane
- What is the impact?
- How might it affect restoration efforts?

Road Run off – Sources of contamination

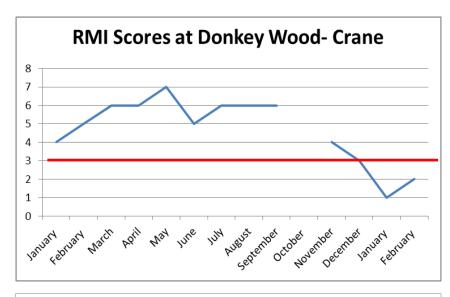
Contaminant	Sources relating to road runoff		
Lead	Tyre wear, lubricating oil, grease, paints, dyes, lead-acid batteries (in past decades, leaded petrol would be a source)		
Copper	Electrical components, engine parts, brake lining, electroplating, copper pipes (trace amounts in gasoline and engine oil)		
Zinc	Street furniture, worn tyres, electroplating, galvanized iron and steel, grease (trace amounts in engine oil)		
Cadmium	Worn tyres		
Nickel	Metal plating, worn brake lining, asphalt, lubricating oil (trace amounts in diesel and petrol)		
Antimony	Paint, enamel, textiles, matches, rubber (tyres),		
Chromium	Metal plating, catalysts and refractories, brake fluid, leather tanning, plastics		
Manganese	Engine components		
Iron	Rusting car parts, rusting street furniture		
Arsenic	(produced in trace amounts from fossil fuel combustion)		
PAH's	Diesel, petrol		
TPH	Diesel, petrol		

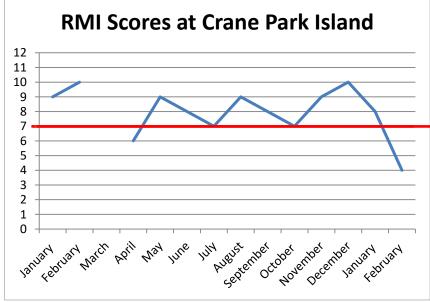
Road Run off – Key Takeaways

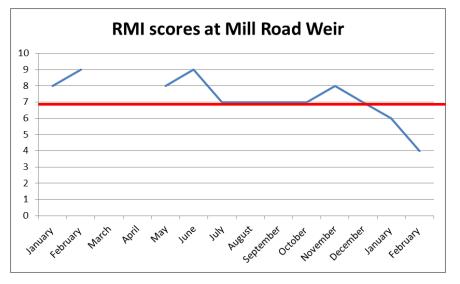
- Sediment store of organic and inorganic pollutants downstream of major roads e.g. M4
- Water samples did not return high concentrations of contaminants
- Hazardous silt can be a constraint to restoration efforts
- Working with Highways and the EA there is the potential for interventions
- There is still a legacy issue to deal with



Median RMI scores by site for year 1, 2 and 3







Pollution Detection

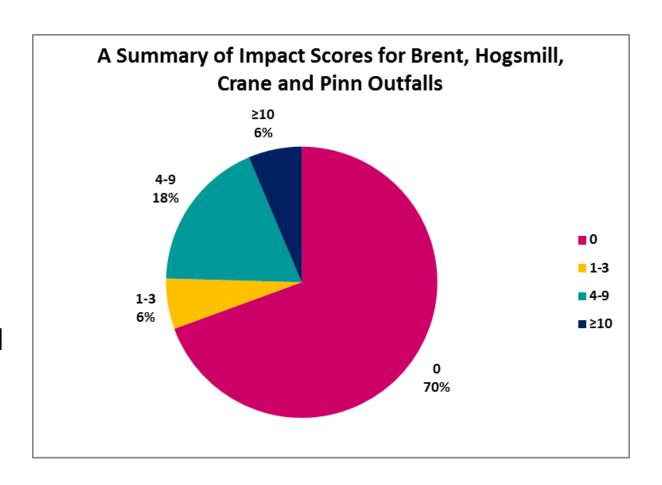
Pollution Detection: How do we standardise reporting?

Standard way
 of assessing
 sewage fungus cover?

 Pro forma for other forms of pollution e.g. oil, chemical or other?

The Outfall Safari across Greater London

112 volunteers trained



The Outfall Safari across Greater London

- 896 outfalls assessed
- 274 outfalls
 Polluting
- 2 catchments currently being surveyed: Ingrebourne and Ravensbourne
- Impact on Thames Water
 SWOP works

Mass Balances for P and NH3N

- Uses loading, real time and SWOP data
- First order balance subject to refinement
- Insight into key processes
- Quantification of interventions

Mass Balances

	P provisional mass balance (Kg/day)	NH ₃ -N provisional mass balance (Kg/day)			
Inputs					
SWOP outfalls	18	18			
Other outfalls	11	11			
Upper DNR	10	1.0			
Peak flush	N/A	0.3			
Total	39	30.3			
Outputs					
Dissolved outflow	11	4			
Absorbed/flushed as sediment	28	_			
In-river chemical processes	_	26.3			
Total	39	30.3			

- Importance of SWOP
- Importance of in river processes
- Importance of P load in sediment ~ 50 tonnes

FUTURE STRATEGY

- 1. Continue baseline monitoring
- 2. Support volunteers
- 3. New volunteer led initiatives
- 4. Work on mass balances feed into AMP 7
- 5. Investigate ammonia pulses

FUTURE STRATEGY

- 6. Quantify effects of interventions
- 7. Assess road run-off impacts
- 8. London links practitioners and academics
- Target reductions in NH3-N and P by 2020
- 10. Engage public social media etc

Thames Water Surface Water Outfall Programme

31 October 2017

Ruta Akelyte
Environmental Protection Technologist

SWOP

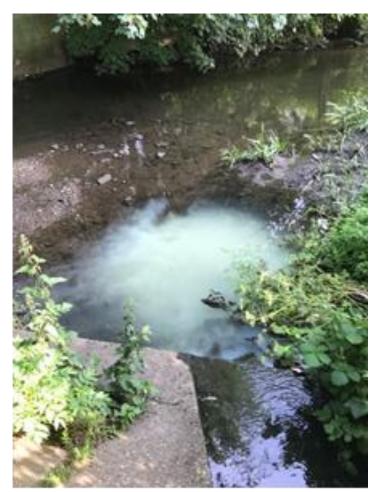
- A team of 6 individuals environmental science backgrounds
- Programme developed by Thames
 Water and Environment Agency
- Funding approval from Ofwat
- Funding released in Asset
 Management Plans (AMP) over a 5
 year period
- Current (AMP6) PSWO Programme is largest ever with biggest delivery profile yet 200 (40/year)
- 101 delivered to date, 21 in year 3
- ~ 100 live projects

AMP6 Review

- 101 outfalls have been significantly improved to date
- 1770 properties with misconnections were identified in the process
- 4024 misconnected appliances identified
- ~90% of these property owners resolved the issue voluntarily
- The remainder are passed over to local authorities for enforcement

Misconnection	Amount
Kitchen Sink	925
Washing machine	899
Hand Basin	802
Toilet	345
Dishwasher	318
Bath	255
Shower	243
Other pollution sources	250

River Crane Projects


- 22 projects singed off to date (Fulwell Park Avenue A B & C was signed off as one)
- 10 on River Crane, 8 on Yeading Brook,
 4 Roxbourne
- 217 properties with misconnections were identified in the process
- 531 misconnected appliances identified
- Misconnection rate ~3.3 %
- Live Projects 16
- 2 projects to commence in the beginning of 2018.

Misconnection	Amount
Kitchen Sink	114
Washing machine	126
Hand Basin	111
Toilet	35
Dishwasher	70
Bath	30
Shower	32
Other	2

Hospital Bridge North Outfall

- 14 misconnected properties;
- 2 outstanding;
- 1 with Local Authority a meeting with Richmond EHO to discuss rectification has been arranged;
- CCTV to trace pollution on one road will be completed in the beginning of November.

Outfall Safari

Total Outfalls Assessed	Total scoring impact Score 10+	Outfalls not on SWOP or Hotspot List	Total scoring impact Score 5-9	Outfalls not on SWOP or Hotspot List
230	6	1	23	9

Figure 1. In-channel survey work in Harrow during the 2016 OS (taken from Citizen Crane Project Year 2 Progress Report)

Outfall Safari - Overview

Investigations completed:

Project Name & Location	Post Code	TQ Reference	Watercourse	Outfall Score	Comments/Update s
Crane Park Road (A316)	TW2 6DF	TQ1356472692	Crane	6	No sign of pollution in SW line, manhole has been caged.
Torcross Road	HA4 0TG	TQ1128686573	Yeading Brook West	8	No sign of pollution in SW line, manhole has been caged.
Appledore Avenue	HA4 0UT	TQ1091686332	Yeading Brook West	8	No sign of pollution in SW line, manhole has been caged.
Cedar Avenue (near Bourne Primary School)	HA4 6UJ	TQ11371 84872	Yeading Brook East	6	No pollution found at the outfall, just debris
Northumberland Road	HA2 7RE	TQ1334788696	Yeading Brook West	6	No pollution

Outfall Safari - Overview

Awaiting rectification:

Project Name & Location	Post Code	TQ Reference	Watercourse	Outfall Score	Comments/Updat es
Hayes Road	UB2 5XJ	TQ1043778650	Crane	8	3 misconnection found and 1 food compressor leaking and not bunded causing pollution into the service water line.
North Hyde Gardens	UB3 4QR	TQ1043678948	Crane	6	1 misconnection found (overpump system from foul to surface).
Brook Drive	HA1 4RS	TQ14639 89380	Yeading Brook West	16	1 misconnection and 1 network defect found.
Bedford Road	HA4 6LT	TQ1017885848 TQ1018285853	Yeading Brook West	8	3 misconnections found.
Under Kings Road bridge - Kings Road Bridge	HA2 9JG	TQ1273986328	Yeading Brook East	6	Under investigation.

Future Work

 14 projects on River Crane, Yeading Brook and Roxbourne River on AMP6 Waiting List

- Emerging outfalls prioritised accordingly
- Close collaboration with Citizen Crane in shaping AMP7 SWOP
- Sample analysis at TW labs
- Thanks for helping to shape an efficient SWOP

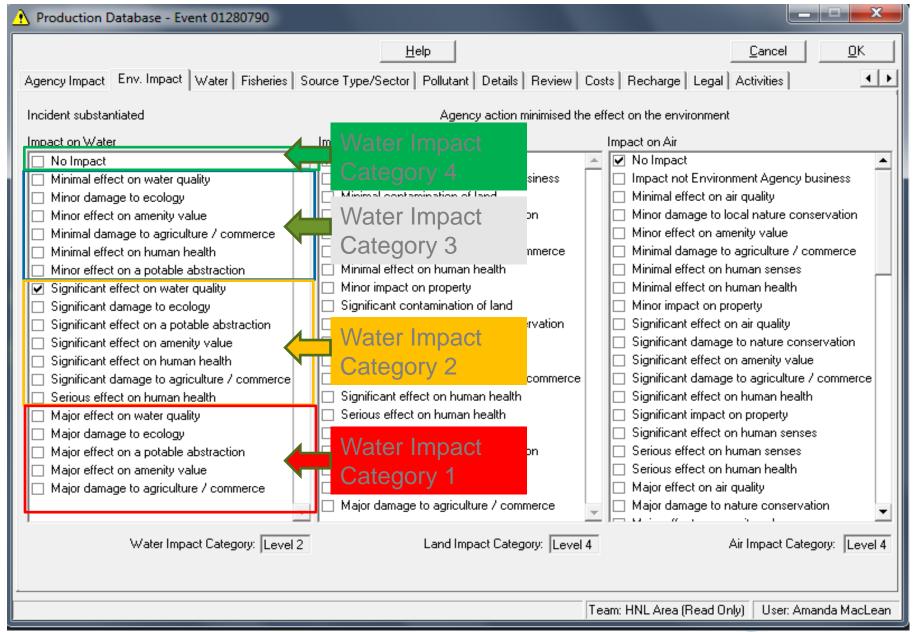
Thank you

Citizen Science Leads to Compliance

Name: Mathew Reed

Job title: WFD Technical Specialist & Regulatory Environment Officer

Date: 31 October 2017


Polluted Outfall at M4 Motorway Junction 3

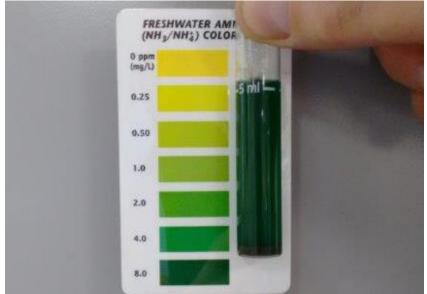
- Cranford Park

- Identified during Citizen
 Crane Outfall Safari
- Reported to the EA via the National Incident Reporting System (NIRS)
- Assessed as having a limited and localised impact around the point of discharge

Environment Agency M4 Junction 3 Legend 1560048 Open Pollution Incidents Closed Pollution Incidents 759998 109404 422701 Thames Water sewer network 284524 Park 314345 Cranford Park Moat Primary School Other/Not defined House United Utilities sewer manholes 1130730 0 Surface Water 0 Combined 0 Other/Not defined 1130728 Hostile Sites Live Flood Warnings (Points) Severe Flood Warning Flood Warning The Heston Centre Flood Alert 860987 857692 Live Flood Warnings (Areas) Severe Flood Warning 1088750 m 1094103 218431 Flood Warning Flood Alert 133217157632 All Clear Given Warning no longer in force 852221 Cranford Cranford Park Park Cranford Community College (Secondary) 63083 277400283446 226 © Crown Copyright and database rights 2017. Ordnance Survey 100024198.

Measurements Reference: 731875 Point: PCRR9999

Pre-sampling


Top

Comments

Project Name: M4/J3 Cranford Park

EDF Topic(s): Flooding and Water Quality, Biodiversity, Cultural Heritage

Partners: Highways England, Hillingdon and Hounslow

Aims

The EA are working with Highways England (HE) to improve water quality, water attenuation and baseline flow at Cranford Park. Biodiversity will also be enhanced in the area by creating new habitat, providing fish refuge and providing an important nursery area for juvenile fish, thus improving fish populations and the WFD status of the reach of the river. This aligns with the Environment Designated Fund sections of Flooding and Water Quality, Biodiversity and Cultural Heritage, which addresses pollution from highway runoff through measures to attenuate and improve water quality and improving the biodiversity as well as the character and quality of the built and natural landscape.

REGULATIONS AND ENFORCEMENT

- THE HAZARDOUS WASTE (ENGLAND AND WALES) REGULATIONS 2005
- CONTROL OF POLLUTION (OIL STORAGE) (ENGLAND) REGULATIONS 2001 (OSR)
- ENVIRONMENTAL PROTECTION ACT 1990
- ENVIRONMENTAL PROTECTION (DUTY OF CARE) REGULATIONS 1991
- ENVIRONMENTAL PERMITTING (ENGLAND AND WALES) REGULATIONS 2016

ACTION: Please provide evidence that waste oil storage areas have been modified to comply with the Control of Pollution (Oil Storage) (England) Regulations 2001.

DEADLINE: 24 June 2016

PLEASE BE AWARE, FAILURE TO ADHERE TO THIS DEADLINE MAY RESULT IN ENFORCEMENT ACTION.

Public Interest Factors

- Intent
- Foreseeability
- Environmental Effect
- Financial Gain
- Previous History
- Attitude of Offender
- Personal Circumstances

National Incident Hotline

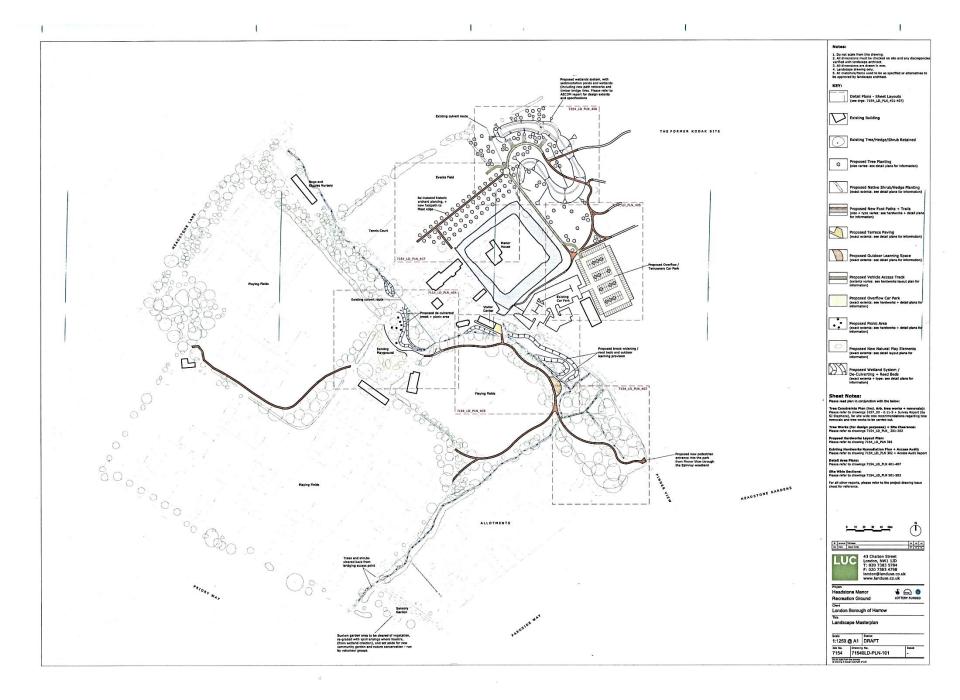
Freephone from landline or mobile:

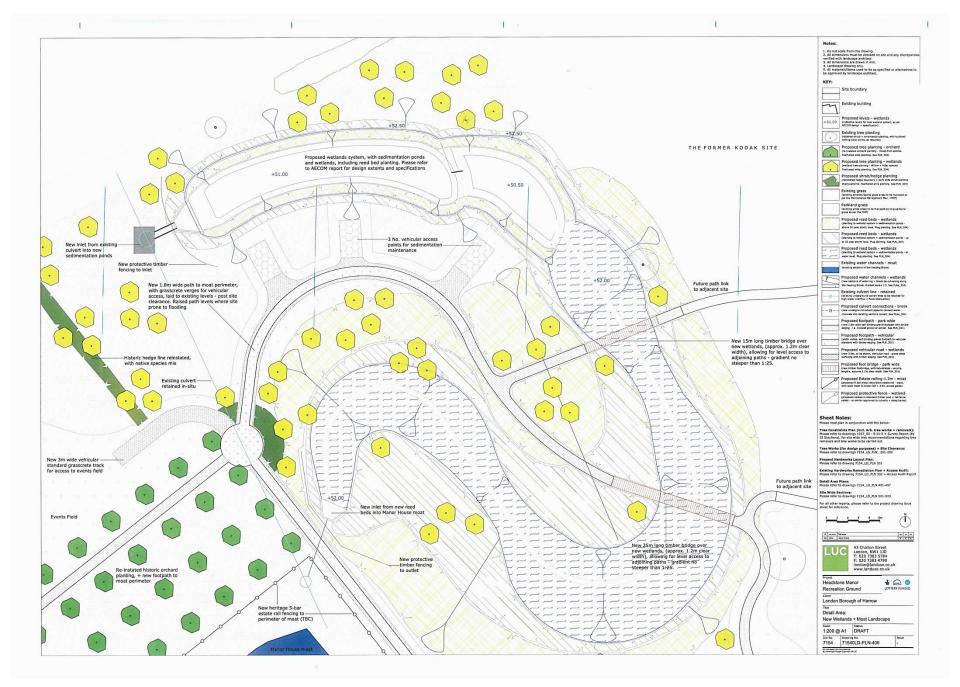
0800 80 70 60

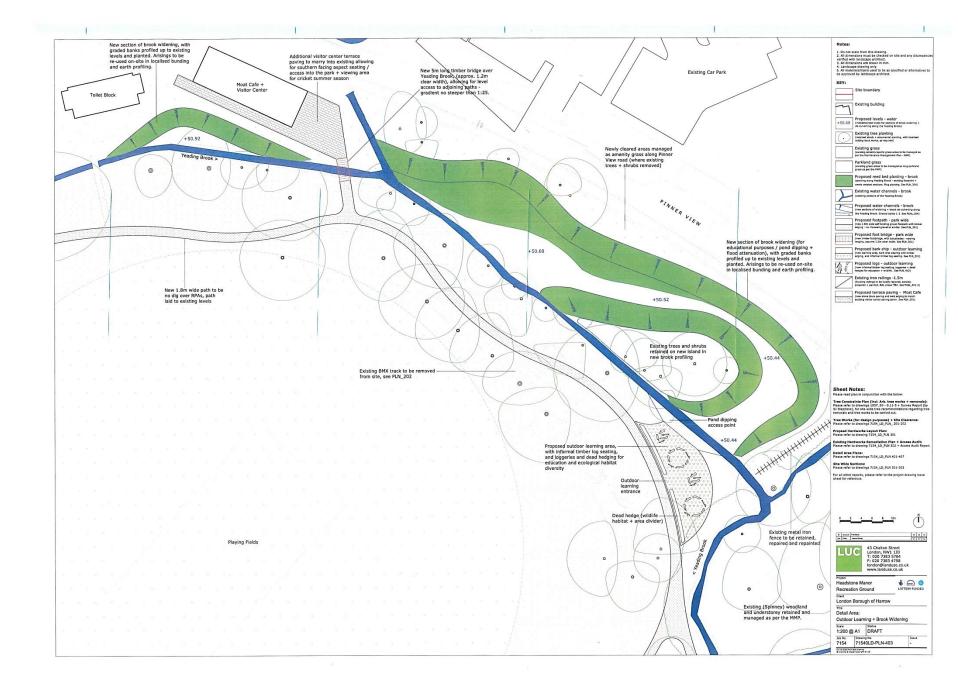
- •Where is it?
- •Is the water discoloured?
- •Is there an odour?
- •How big is the area affected?
- •Have you seen any dead or distressed fish or other wildlife?

- •What is the cause of the problem/where is the pollution entering the stream?
- •Has this ever happened before?
- •Do you have any pictures?
- Your contact details

Yeading Brook & Roxbourne Stream River Improvements

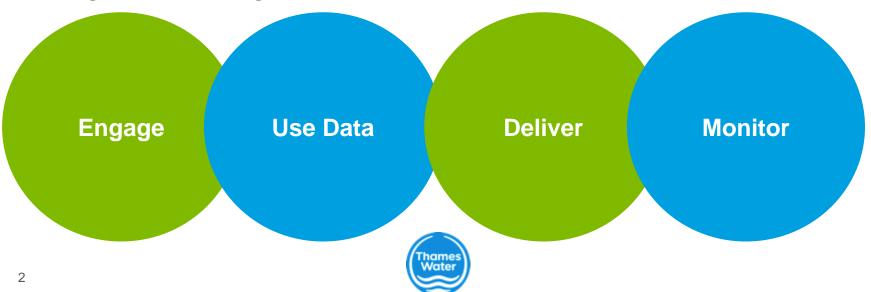

Roxbourne Stream River Newton Park West





Yeading Brook Headstone Manor Park

Thames Water's Smarter Catchments Proposal


Yvette de Garis
Head of Environmental Regulation

Catchment based approach.

Local partnerships and delivery.

- Collaborative working on a river catchment scale.
- Catchment
 Based Approach
 Partnerships for Action

- Cost effective delivery.
- Improvements to the environment.
- Targeted and integrated catchment interventions.

Defra pioneer projects.

- 4 pioneer projects designed to support the Government's 25
 Year Environment Plan
- Landscape, urban, catchment and marine pioneer areas
- Urban pilot in Greater
 Manchester
- Questionable read across to the London challenges?

"Together there's lots of things we can do. Working with stakeholders across the city region to make sure people here have clean air to breath, quality green spaces to enjoy and also places where they can get out of their cars and onto their bikes".

Andy Burnham – Mayor of Greater Manchester

Our challenge.

Upgrades £100s millions

Tighter treatment standards

Increase in customer bills

Record growth

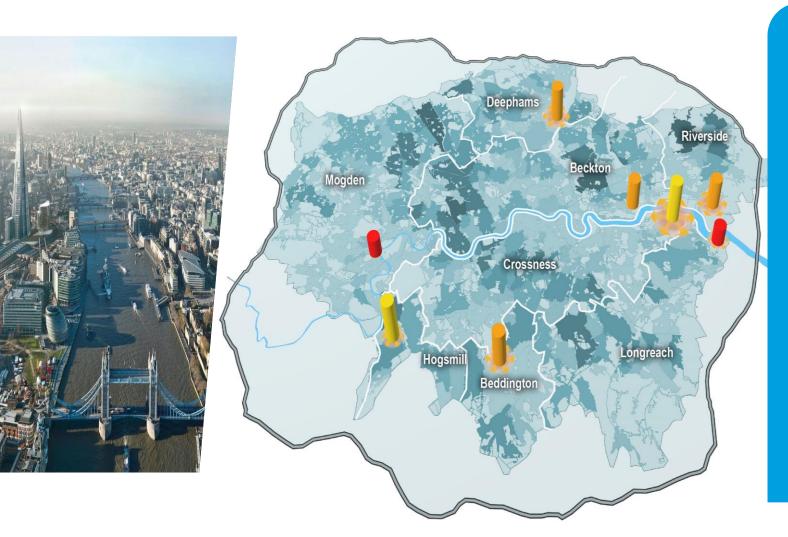
Extreme weather patterns

'Smarter' Water Catchments.

What are the key elements of Smarter Catchments?

Managing land and surface / ground water as a system.....

Catchment based


Engaging our customers

Delivering wider societal benefits

The London challenge.

London is growing. FAST.

From 8.6 million people today, we expect that by 2036 our five largest catchments will need to transport and treat the waste of 10.8 million people.

By 2100 that number is forecast to grow to 15 million.

We have to serve these customers and deal with issues such as climate change, ageing infrastructure, new regulations, changing markets.

West London catchment management pilot.

Understand the issues.

Flooding

Population growth

Modified channels

Pollution

Invasive species

Water resources

Meet with key external stakeholders.

What might solutions look like?

Option	Notes
Local catchment partnership	Discussing with LCP how we could work together
Catchment modelling	 Sophisticated map and model key for wider work Repository for citizen science data; potential as engagement tool
Misconnections; outfall restoration; foul network issues	 Surface water in combined networks significantly increasing flow to works Estimated 25% SWOs polluted Opportunities for new foul network and recommissioning of old SWOs
SuDS	Significant element of AMP7 plan
Domestic drainage schemes	E.g. water butts; attenuators; plantersSuDS in schools
Citizen science	 Seek to extend successful existing programme Training and quality assurance key
Education and engagement	 Programme targeting 60 schools within catchment

Our proposed pilots.

Water resources and flood management

Progress to date.

Establish pilots within current business period ready to start delivering projects and work on the ground in AMP7.

Identified key partners for each pilot and held initial discussions to gauge support.

All potential partners are supportive but different which will demand adaptive ways of work and governance arrangements – one size does not fit all!

Crane catchment

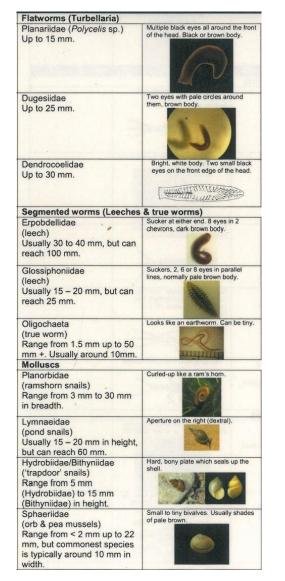
How can we work with you to integrate our Smarter
catchments proposal into your vision for the catchment?

Thank you

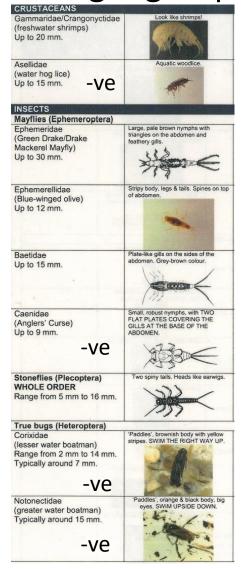
Riverfly Plus

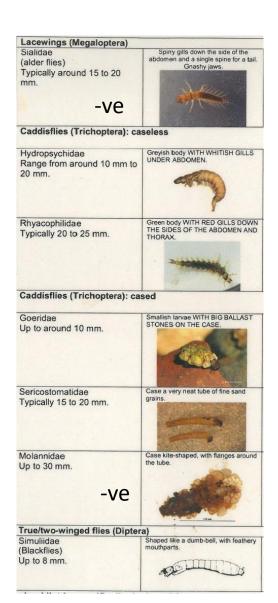
Steve Brooks

RiverflyPlus What is it and why do it?


- Optional add-ons to the basic ARMI monitoring
- Limitations of ARMI
- few taxa not always best-suited for some rivers
- Record other important parameters affecting river quality
- Learn new skills
- Get to know more about your river

Extended riverfly monitoring


Detects effects of low flow, siltation, nutrients, impacts on urban rivers


www.lincolnshirechalkstreams.org chalkstreams@lincolnshire.gov.uk

-ve score

26 target groups

RIIM

River Invertebrate Identification & Monitoring

Species bench mark for your river

Species-level identification

Bespoke species identification

manual based on EA list for your

RIIM courses are being run at:

The John Spedan Lewis Trust's Field Centre at

Leckford Hampshire

Contact:

Warren Gilchrist - gilchrist@our-home.me.uk

Caddisflies	Spring	Autumn
Silo nigricornis	15	0
Goera pilosa	4	4
Agapetus fuscipes	13	2
Lepidostoma hirtum	402	0
Potamophylax	1	0
Drusus annulatus	7	2
Chaetopteryx villosa	11	0
Anabolia nervosa	1	1
Halesus radiatus	0	1
Molanna angustata	0	1
Sericostoma personatum	97	24
Athripsodes	14	0
Mystacides	0	25
Hydroptila	7	3
Hydropsyche pellucidula	9	49
Hydropsyche siltalai	10	0
Rhyacophila dorsalis	4	0
Polycentropus flavomaculatus	0	4

Damsels	Spring	Autumn
Calopteryx splendens	1	0

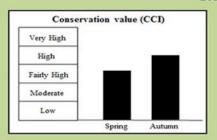
Beetles & Bugs	Spring	Autumn
Elmis aenea	207	260
Limnius volckmari	52	76
Dytiscidae	0	7
Gyrinus	3	0
Haliplidae	0	1
Corixa	1	0

Crustaceans	Spring	Autumi
Gammarus pulex	1328	590
Asellus aquaticus	14	5

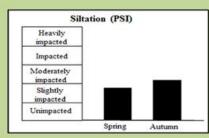
Spring	Autumn
0	13
	Spring 0

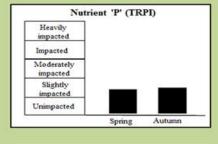
Spring	Autumn
77	67
7	181
361	449
0	21
37	3
354	0
1	0
1	0
	77 7 361 0 37 354 1

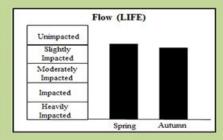
Stoneflies	Spring	Autumn
Leuctra hippopus	11	43
Leuctra geniculata	0	16

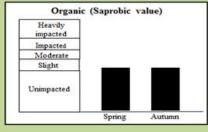

Molluscs	Spring	Autumn
Theodoxus fluviatilis	4	6
Bithynia tentaculata	14	2
Valvata piscinalis	0	2
Physa fontinalis	3	1
Potamopyrgus antipodarium	0	30
Lymnaea pereger	0	3
Planorbis	23	7
Pisidium	16	20
Ancylus fluviatilis	10	25

Spring	Autumn
41	371
1	1
34	7
1	0
	41


Alderfly	Spring	Autumn
Sialis lutaria	0	1
Worms	Spring	Autumn




River Avon - Allenby Bridge 2015



	Spring	Autumn
BMWP	196	195
WHPT	204	202
ASPT (WHPT)	6.4	6.1
Riverflies - EPT(s)	22	18
CCI	13.25	17.50
LIFE	8.11	7.72
PSI	64.63	56.58
TRPI	73.53	71.43
Saprobic	1.88	1.88

Water chemistry

Earthwatch, Freshwater Watch programme

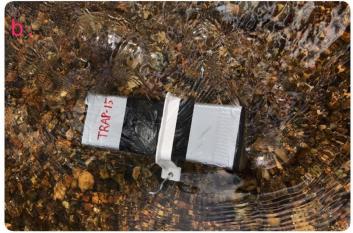
Nitrates from vehicles and farm run-off and phosphates from domestic sources cause nutrient-enrichment of rivers with impacts on fisheries and invertebrates

Hydromorphology

MorpH – modular river survey

Baseline data

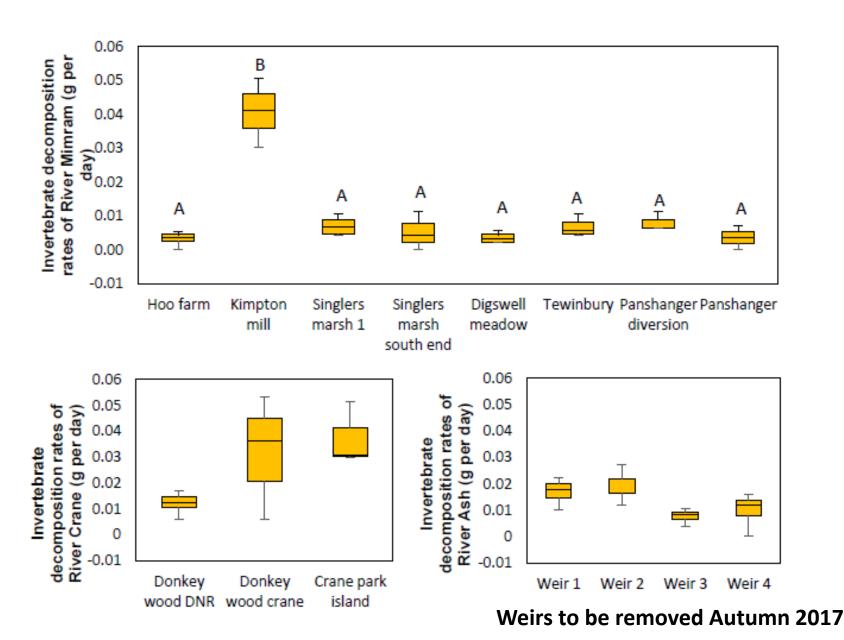
Changes following river restoration


Comparisons with ARMI scores

http://www.modularriversurvey.org

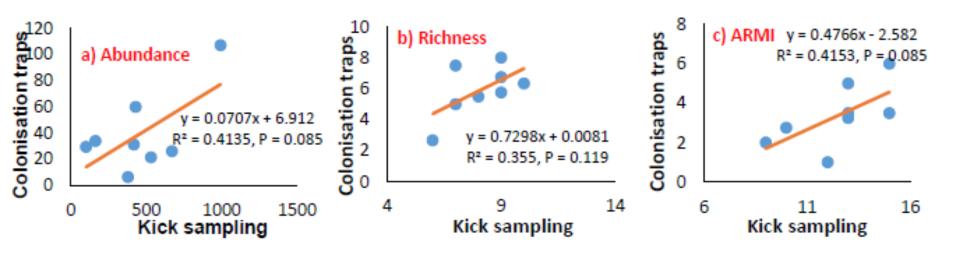
Monitoring ecosystem functioning and river restoration

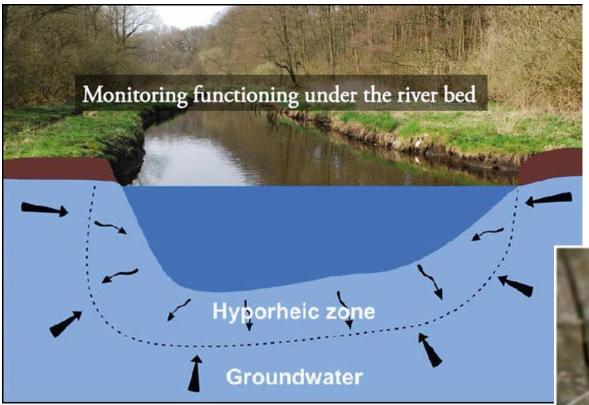
Colonisation traps designed by Dr Murray Thompson


Traps in position at Kimpton Mill, River Mimram, Herts

Liangliang Zhang

Paper exposed to invertebrate decomposition after two weeks in R. Mimram, May 2017


Invertebrate decomposition rates


Invertebrate decomposition rates significantly correlated with

Abundance of shredders (e.g. *Gammarus*, molluscs)
Physical habitat complexity of channel and riparian vegetation
(MorpH data)

Invertebrate data from traps correlated with kick sample results

Scratching below the surface

Uses teabags to measure decomposition rates below the river bed

Little known on how function affected by environmental variables

Anne Robertson Roehampton University

Pilots on R. Wey and R. Eden

Invasive species

Impacts on fisheries, invertebrates, bankside habitats and channel morphology

Gammarus orange spot

Caused by a fish parasite (the spiny-headed worm *Pomphorynchus*) which uses *Gammarus* as an intermediate host.

Up to 25 cm long, potential pathogen

Data needed to assess status of parasite in UK

Send samples to:
Hannah Bradley
Environment Agency,
National Fisheries Lab
Bromholme Lane
Brampton,
Cambridgeshire
PE28 4NE

Details of all RiverflyPlus projects mentioned here available on Riverfly Partnership website www.riverflies.org